A little help with some basic calculus

S

Steven O.

Guest
Okay, this is a homework problem, but I'm middle-aged and already have
my B.A., and just returning to school to pick up a little more
knowledge. Besides, you can clearly see (below) that I'm giving this
my best shot. So, someone please help me out here. For a basic
electronics class, we are given that the temperature coefficient for
the resistance of a material is given by:

a (for alpha) = (1/R)(dR/dT), and we are asked to show that:

R2 = {[ 1 + a(T1 - Ts) ] / [1 + a(T2 - Ts)]} R2

where Ts is the "reference temperature".

But here is how the math works out for me:

a = (1/R)(dR/dT)

dR/R = a dT Take indefinite integral of both sides....

ln R = a T + Ts, where Ts is said reference temperature

Assume R1 corresponds to T1, and R2 to T2, then....

ln R1 = a T1 + Ts, and ln R2 = a T2 + Ts

ln R1 - ln R2 = a (T1 - T2), so Ts is already gone.

ln (R1/R2) = a (T1 - T2), exponentiate both sides...

R1/R2 = exp (a [T1 - T2])

exp x is approximately 1 + x, so we have,

R1 = R2 { (1 + a [T1 - T2]) }, which is not the professor's desired
result. Did the professor screw up, or have I forgotten some basic
calculus or algebra in twenty years since college? Thanks in advance
for all replies....

Steve O.


"Spying On The College Of Your Choice" -- How to pick the college that is the Best Match for a high school student's needs.
www.SpyingOnTheCollegeOfYourChoice.com
 
"Steven O." <null@null.com> wrote in message news:b68b011nureekgu9ghd8hfgbrbcmvqkt9q@4ax.com...
Okay, this is a homework problem, but I'm middle-aged and already have
my B.A., and just returning to school to pick up a little more
knowledge. Besides, you can clearly see (below) that I'm giving this
my best shot. So, someone please help me out here. For a basic
electronics class, we are given that the temperature coefficient for
the resistance of a material is given by:

a (for alpha) = (1/R)(dR/dT), and we are asked to show that:

R2 = {[ 1 + a(T1 - Ts) ] / [1 + a(T2 - Ts)]} R2

where Ts is the "reference temperature".

But here is how the math works out for me:

a = (1/R)(dR/dT)

dR/R = a dT Take indefinite integral of both sides....

ln R = a T + Ts, where Ts is said reference temperature

Assume R1 corresponds to T1, and R2 to T2, then....

ln R1 = a T1 + Ts, and ln R2 = a T2 + Ts

ln R1 - ln R2 = a (T1 - T2), so Ts is already gone.

ln (R1/R2) = a (T1 - T2), exponentiate both sides...

R1/R2 = exp (a [T1 - T2])

exp x is approximately 1 + x, so we have,

R1 = R2 { (1 + a [T1 - T2]) }, which is not the professor's desired
result. Did the professor screw up, or have I forgotten some basic
calculus or algebra in twenty years since college? Thanks in advance
for all replies....

Steve O.


"Spying On The College Of Your Choice" -- How to pick the college that is the Best Match for a high school student's needs.
www.SpyingOnTheCollegeOfYourChoice.com

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Is the equation

R2 = {[ 1 + a(T1 - Ts) ] / [1 + a(T2 - Ts)]} R2

correct? Should R2 appear on both sides of the equation?


Aristotle Polonium


+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

From
ln R1 = a T1 + Ts and ln R2 = a T2 + Ts

exponentiate both sides giving

R1 = exp(a T1 + Ts) and R2 = exp(a T2 + Ts).

Now use your "small eXponent approximation" e^X = 1 + X
giving

R1 = 1 + a T1 + Ts and R2 = 1 + a T2 + Ts.

Now form the ratio R2/R1, then isolate R2.


Aristotle Polonium


+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 
Thanks to everyone who helped out on this one.

Steve O.


On Sun, 06 Feb 2005 04:56:37 GMT, Steven O. <null@null.com> wrote:

Okay, this is a homework problem, but I'm middle-aged and already have
my B.A., and just returning to school to pick up a little more
knowledge. Besides, you can clearly see (below) that I'm giving this
my best shot. So, someone please help me out here. For a basic
electronics class, we are given that the temperature coefficient for
the resistance of a material is given by:

a (for alpha) = (1/R)(dR/dT), and we are asked to show that:

R2 = {[ 1 + a(T1 - Ts) ] / [1 + a(T2 - Ts)]} R2

where Ts is the "reference temperature".

But here is how the math works out for me:

a = (1/R)(dR/dT)

dR/R = a dT Take indefinite integral of both sides....

ln R = a T + Ts, where Ts is said reference temperature

Assume R1 corresponds to T1, and R2 to T2, then....

ln R1 = a T1 + Ts, and ln R2 = a T2 + Ts

ln R1 - ln R2 = a (T1 - T2), so Ts is already gone.

ln (R1/R2) = a (T1 - T2), exponentiate both sides...

R1/R2 = exp (a [T1 - T2])

exp x is approximately 1 + x, so we have,

R1 = R2 { (1 + a [T1 - T2]) }, which is not the professor's desired
result. Did the professor screw up, or have I forgotten some basic
calculus or algebra in twenty years since college? Thanks in advance
for all replies....

Steve O.


"Spying On The College Of Your Choice" -- How to pick the college that is the Best Match for a high school student's needs.
www.SpyingOnTheCollegeOfYourChoice.com

"Spying On The College Of Your Choice" -- How to pick the college that is the Best Match for a high school student's needs.
www.SpyingOnTheCollegeOfYourChoice.com
 

Welcome to EDABoard.com

Sponsor

Back
Top